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We discuss in detail techniques that have been used to determine single-particle 
equilibrium time correlation functions in a hard-sphere fluid on the basis of 
kinetic theory. The accuracy of various procedures is assessed. 
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1. I N T R O D U C T I O N  

Equilibrium time correlation functions between local microscopic fluc- 
tuations of one-particle quantities in a hard-sphere fluid can be determined 
numerically on the basis of the revised Enskog theory (1 17) (for surveys see 
refs. 7). The results of explicit calculations for these functions have been 
reported in detail before, (4'6'8-12) in order to interpret neutron scattering 
data on simple one-component  liquids (8 10,13 19) and molecular dynamics 
data for hard-sphere fluids. (2~ In this paper, we report the technical 
details of our calculations on the equilibrium time (t) correlation functions 
in the revised Enskog theory. (8-12'13) 

We consider the set of time correlation functions for t ~> 0 given by 

Fj,(k, t ) =  (~j(vl)  etLE(k)~t(Vl))l (1.1) 

where ~bj(vl) and ~bz(Vl) are elements of a complete set {q~j(vl)} of ortho- 
normal polynomia in the one-particle velocity vl, which will be given 
below, The brackets denote the one-particle average 

( ' ' ' ) 1  = f d r 1  @(/31) " " �9 ( 1 . 2 )  
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with ~b(vl) the normalized Maxwell velocity distribution function 

m ~3/2 e mv~/2kBT 
~(/)1) = ~2----~BB T// (1.3) 

T the temperature, k B Boltzmann's constant, m the mass of the particles, 
and the inner product of any two functions f (vl)  and g(vl) of vl is defined 
by {f(vl)  g(vl) ) l .  In Eq. (1.1), LE(k ) is the Fourier transform of the linear 
symmetric inhomogeneous Enskog operator, introduced before. (23) LE(k) 
acts on functions of Vl and is 

LE(k) = - i k "  vl + nZ/lk + nAk (1.4) 

Here n = N/V is the number density, with N the number of particles 
and V the volume of the fluid. The linear Enskog operator LE(k) of 
Eq. (1.4) is a generalization of the corresponding linear Boltzmann 
operator that describes the time evolution in a dilute gas of hard spheres. 

The first term - i k ' v ~  represents the free streaming of a particle and is 
also present in the linear Boltzmann operator, k is a wavevector with 
length k = Ik{. 

The second term generalizes the binary collision operator of the 
Boltzmann equation. It contains, like the Boltzmann collision operator, 
only uncorrelated binary collision dynamics, but the statistical ansatz of 
the Boltzmann collision term has been modified in two respects to incor- 
porate the higher density of the fluid. First, the frequency of binary 
collisions has been increased by a factor ;~ = g(rr), where g(rr) is the radial 
distribution function for two hard spheres, with diameter a, at contact. 
Second, the difference in position of two colliding hard spheres has been 
taken into account, which is neglected in the Boltzmann collision operator. 
This leads, in the revised Enskog theory, to a collision operator/ /k which 
depends on k. 

The operator/ lk acts on an arbitrary function h(v~) as 

Ak h(vl ) = Akh(Vl ) - {Akh(V~ ) )1 (1.5) 

with the binary collision operator Ak given by 

Akh(Vl) = -0- f d~ f dv 2 q~(v2)]v12" o] 0(v12" ~) 

• {h(Vl)-h(V'l)+e-ik"~[h(v2)-h(v'2)]} (1.6) 

Here ~ = rr~, where the unit vector 6 defines the geometry of the binary 
collision, Vlz=Vl -v2 ,0 (x )  is the Heaviside (step) function, and 
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v'~ = v~ - (v~2" ~) ~ and v~ = v2 + (VI2 ~ ~)  ~ are the velocities of particles 1 
and 2 after a binary collision with initial velocities vl and v2, respectively. 
The operator XAk reduces to the linear Boltzmann collision operator Ao in 
the limit n a 3 ~ 0  and ka--*O, since then (Aoh(v~)>~=0, x -* l ,  and 
e x p ( - i k "  6) --* 1 [cf. Eqs. (1.5), (1.6)]. 

The third term in Eq. (1.4), the mean field operator Ak, is not present 
in the linear Boltzmann operator. It is given by 

( ' )  nAkh(vl)= 1 xf~(k)  fdv2qS(vz) ik.(vl+v2)h(v2) (1.7) 

Thus, Ak depends on the static structure factor S(k) and takes into account 
the average influence of the other particles on the free motion of a hard 
sphere because of excluded volume effects. 

The functions Fj~(k, t) will be evaluated here using the Bhatnagar- 
Gross-Krook (BGK) method. (24) In the BGK method the functions Fjz(k, t) 
of Eq. (1.1) are calculated explicitly in successive orders M, where M is the 
order of the BGK approximation. In the BGK approximation of order M, 
Le(k) is replaced by (9) 

LE(k ) = f ( k )  + F(k) (1.8) 

where 

f (k)  = - i k .  vl + d(k) (1.9) 

is a function of vl, and F(k), given by 

M M 

F(k)h(Vl)= ~ ~ ~j(vl)~,(k)<~/(vl)h(Vl)>l (1.10) 
j = l  / = 1  

is an operator acting on functions of v~. In Eqs. (1.9) and (1.10), 

d(k) = nZOM+ ,,M+ l(k) (1.11) 

and 

with 

~z(k) = -d(k) ~j, + nxQj,(k) + ik ( ~ )  ~/2 

)<(1 ~(k)' ((~J'l~l'24-l~J'2(~l'l (1.12) 

~s,(k) = <Oj(vi)/Tk~,(Vl)>l (1.13) 
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The third term on the right-hand side of Eq. (1.12) is due to the mean field 
operator -~k [cf. Eq. (1.7)], where the indices 1 and 2 of the Kronecker 
delta functions refer to the first two polynomia in the complete ortho- 
normal set {~bj(Vl)}, i.e., 

q)l(Vl)---- 1 
(1 .14)  

~b:(vl) = (m/kB T) I/2 Y l "  k/k 

which represent the local density and longitudinal velocity, respectively. (23) 
We remark that Eq. (1.8) for LE(k) follows from Eq. (1.4) when 

- i k ' V l  and nAk are taken into account exactly and when Ak is 
approximated by the infinite BGK matrix g?~K(k). In the BGK 
approximation of order M, the first M x M block of ~?sl(k) is taken 
into account exactly, i.e., g?~K(k)= g2st(k ) for j or l=  1,..., M, while the 
remaining matrix elements Q~GK(k) are set equal to zero, except for the 
diagonal elements j = 1 = M + 1 ..... which are all set equal to 
(2M+ 1,M+ 1(k) = d(k)/ng .(9) In order to determine the F~z(k, t), we shall use 
their Laplace transforms, defined by 

f0 ~ 1 Gs,(k, z)= dte-Z'Fj,(k, t )=  <~bj(vl) z _  LE(k) ~b,(vl))l (1.15) 

which are, for j, l = 1,..., M, given by 

1 
Gsl(k' z)= [ 1 -  sg(l~ z) ~(k) &C(k' z)lj l (1.16) 

Here ~ ( k )  is the M x  M matrix with elements ~ ( k )  defined in Eq. (1.12) 
and d(k , z )  is the M x M  matrix with elements s~jt(k,z ) given by 
(j, l=  1 ..... M), 

1 

/~j(u Z 1 > = + ik- v 1 - -  d(k) ~bz(vl) 1 (1.17) 

We remark that Eq. (1.16) follows from Eq. (1.15) by applying the operator 
identity 

1 1 1 1 
~ - - -  F(k) 

Z-LE(k)  z - f ( k ) - F ( k )  z - f ( k )  z - f ( k )  z - f ( k ) - F ( k )  
(1.18) 
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to the right-hand side of Eq. (1.15) and by solving the resulting identity for 
Gji(k, z) in terms of the M x M matrices d ( k ,  z) and o~(k). 

Thus, the Gjt(k, z) are obtained from M x M matrix multiplication and 
inversion [cf. Eq. (1.16)1 and the Fjl(k, t) from the inverse Laplace trans- 
forms of the Gjl(k, z). 

In this paper we derive expressions for the matrix elements ~t(k,  z) 
and ~l(k) [or Oil(k); cf. Eq. (1.12)] needed in Eq. (1.16) that have been 
used in previous publications. (8 12) 

For the complete set of functions {~bj(Vl)} that determine the matrix 
elements s~j-t(k, z) and ~jl(k) we chose the Burnett polynomia. (25) These 
polynomia are proportional to the product of c t, a spherical harmonic 
y~m)(~), and an associated Laguerre polynomial L~t+l/2)(c2), where 
c = (m/2kB T)l/2v is a reduced dimensionless velocity and ~ = e/c is the unit 
vector in the direction of c. Thus, each label j in ~bj(vl) stands for the three 
"quantum numbers" (rj, lj, mj)=  j. 

We have chosen this set of polynomia for the following three reasons. 

(i) The operator Lz(k) is, for all k, invariant for rotations around 
the k axis. Here and in the following, we shall take k in the z direction. This 
implies that mj is a "good" quantum number. Therefore, Fjl(k, t) = 0 for all 
k and t when m j r  t, or, equivalently, correlations occur only between 
fluctuations which have the same quantum number mj = mr. We note here 
that in neutron scattering experiments one considers fluctuations with 
quantum number mj = 0 and that the correlation functions with mj = _+1 
are relevant for calculations of the shear viscosity of the fluid. Correlation 
functions of the hard-sphere fluid with ]mjl > 1 have had, so far, no 
practical applications. 

(ii) The operator "4k in LE(k ) [cf. Eq. (1.4)] is for k = 0  and k =  0o 
rotationally invariant, so that lj is a good quantum number for small and 
large k. Thus, Oil(k) is diagonal in mj and m l for all k and, in addition, 
diagonal in lj and ll for k ~ 0 and k ~ oe. 

(iii) The elements of Oil(k) with rjCr~ or ljr are, for all k, far 
smaller than those with rj = rt and lj = lt. Therefore, the eigenfunctions and 
eigenvalues of Ak are, in first approximation, given by ~bj and Ojj(k), respec- 
tively. This property is relevant for high fluid densities in particular, since 
then ngAk in the expression (1.4) for LE(k) dominates the free streaming 
and mean field terms, so that the ~bj(vl) and Ojj(k) are also approximate 
eigenfunctions and eigenvalues of LE(k), respectively. ~176 

At the end we will discuss the relationship of the BGK method to two 
other approaches that have been used to determine the Fit(k, t), each 
applicable in a limited k range, however, i.e., hydrodynamics, (7) valid for 
k ~ 0 ;  and the ideal gas description, (2m valid for k ~ oe. In fact, as has 
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been noted before, (6'12'27) the BGK method interpolates between these two 
approaches and applies to all 0 ~< k < oo. 

In Section 2 we give the general expressions for the ~bj(vl), in Section 3 
we derive the matrix elements aCjt(k, z), and in Section 4 we give the matrix 
elements Ojt(k ). We end with a discussion of the previous results in 
Section 5. In addition, a comparison is made with results for Fll(k, t) 
calculated by Yip et al., ~27) who also used the BGK method, but Hermite 
instead of Burnett polynomia as the basic set of complete orthonormal 
polynomia in vl. 

2. A C O M P L E T E  SET OF P O L Y N O M I A  

In the explicit calculations to be performed below we use the reduced 
velocity e =  (m/2kBT) 1/2 vl and write the velocity average ( ) 1  as [cf. 
Eq. (1.2)] 

1 (" c2 
( . - - )  =~-37~ j de e -  ' -.. (2.11 

We use the Burnett polynomia given by (25) 

•rU, m(e) = Nr.fL~l+ 1/Z)(c2 ) y}m)(~) (2.2) 

with r = 0 , 1  ..... oo; /=0,1, . . . ,oo;  and m = - / ,  .... 0 ..... i; which are ortho- 
normal, i.e., 

(@r~l,ll,ml(C) I~/r2,/2,m2(C ) ) = ~rl,r2~ll,12~ml,m2 (2.3) 

where the star denotes complex conjugation. In Eq. (2.2), Nr,z is a nor- 
malization factor, given by 

~" 4~rr! "~m (2.4) 
Nr'z= ~(3/2)r +,J 

where we used Pochhammer's symbol (a), defined by 

( a ) , = F ( a + n ) / F ( a ) = a . ( a + l )  . . . . .  ( a + n - - 1 )  (2.5) 

with F(x) the Ffunction and (a)o = 1 for any a. 
The associated Laguerre polynomia in Eq. (2.2) are given by (25) 

L~t)(x) = (1 + u)r+te " ~  (2.6) 
r. kkOU/ ,=o 
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and the spherical harmonics by (28'29) 

Ylm)(~) = Y,,m "~ IT(t)" fz] z ,=o 

where 

(--  )'+m ~(21+ l )(__l--m)!.~ 1/2 
Yl 'm= -27~ I . ~ 4~z(l+m)! J 

(2.7) 

(2.8) 

1 
(~,7)(C) : ~ {I/Jr*/,l(C ) -- [/Jr,/,l(e) } (2.14) 

and 

and where the (complex) vector T(t) is given by 

T(t) = (1 - t 2, - i -  it 2, - 2 t )  (2.9) 

The variables u and t in Eqs. (2.6), (2.7) are real and set equal to zero after 
differentiation. 

From Eqs. (2.2), (2.6), and (2.7) it follows that 

4~r,,,m(C) = r! ~ \~5/ ~ (1 + 

x exp[ - u c  z + sT(t),  e l l  (2.10) 
J S=t=tt=0 

where the real variables s, t, and u are set equal to zero after differentiation. 
Thus, we obtain a complete set of orthonormal polynomia in c for which 
we will use the generating function e x p [ - u c  2 + s T ( t ) ' c ]  [Eq. (2.10)] in 
the explicit calculations to be performed below. 

The polynomia with quantum number m = 0  are real, while the 
polynomia with m # 0 are complex and satisfy (28'29) 

, )m Or,t,m(C)= (-- tpr/_m(e) (2.11) 

Therefore, fluctuations in the fluid with quantum number m = 0  are 
described by the complete set of real orthonormal polynomials 

~r,l(C) : ~lr, l,O(C ) (2.12) 

with r=O,  1 ..... oo; l = 0 ,  1 ..... c~. Similarly, fluctuations in the fluid with 
quantum number Imt = 1 are described by the complete sets of real 
orthonormal polynomials given by 

(/~,~-)(C) =__~1 {i/Jr~,/.l(C ) -1- ijjr./,l(C) } (2.13) 



280 de Schepper et  al. 

where r = 0, 1,..., oo and l =  1 ..... ~ .  The ( _ )  polynomia are orthogonal, 
i.e., 

( ~ + ) t c ~  ~b~,l~(c)) = 0  (2.15) r l , l l \  1 

as follows from Eqs. (2.3) and (2.11). 
In the next two sections, we use the (complex) representation for the 

~O~,r given by Eq. (2.10) to determine the matrix elements ~t(k,  z) and 
(2jl(k). In Section 5 we relate the labels j and r s, lj, mj in ~bj(v) = r 

3. THE  M A T R I X  d 

We consider the matrix elements [cf. Eq. (1,17)] 

(. , ) 
~. t (k ,  z )  = ~lrL,il,mt(e ) Z + ik" v t - d(k) r t (3.1) 

Here and in the next section we abbreviate the sets of quantum numbers 
(ri, li, mi) with i =  1, 2 by (rl, ll, m l ) = j ( i =  1) and (r2, Iz, m2)=l ( i=2) .  
We note that d(k) is real and negative for all k [cf. Eq. (1.11) and Ref. 9] 
and that z is a complex variable with Re z>~0 [cf. Eq. (1.15)], so that the 
real part of z -d (k )  is positive. Using the reduced velocity c instead of Vl 
yields 

. [  m "~1/21 
~t(k, z)= - t  ~ ~ )  -~ Aj~(~) (3.2) 

with 

where 

1 
(3.3) 

{ rn "]l/21 
= i \ ~ j  ~ [ z -  d(k)] (3.4) 

Therefore, ~ is a complex variable with Im ~ > 0, since the real part of 
z -d (k )  is positive. Substituting Eq. (2.10) into Eq. (3.3) leads to 

~exp( - ~ c  2 + X 
Aj,(~)=P~P2Q1Q2 \ c-~--( " c ) l  (3.5) 

where 

= ul + u2 (3.6) 

X = s lT*( t l )  + s2T(t2) 
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and Pi and Qi are differential operators defined by 

Pi = Ylim, \OSi/o \-~ii/O 

1 (~._~ri(l+Ui)r,+,,+l/2 
Qi = ~ Nril, \~l, li/o 

(3.7) 

with i-- 1, 2. The subscript 0 in Eqs. (3.7) means that after differentiation 
with respect to si, ti, and ui, these variables are set equal to zero [-cf. 
Eq. (2.10)], so that also ~ = 0 and X = 0. The velocity integrals in Eq. (3.5) 
can be most conveniently evaluated successively in the x, y, and z direc- 
tions, with the result 

+tit2)2) Ajl(r 

x l @ ( 1  + ~)1/2_]_ (1 ..{_ ~)1/2 / (3.8) 

where we have used the Gaussian integral 

f + o~ dx exp( - ctx 2 + fix) = (g/c~) 1/2 exp(fl2/4a) 
--oo 

for the x, y directions. In addition, we used that T(t) .  T ( t )=  0, so that 

X. X = 2slszT*(tl)" T(t2) = 4sis2(1 + tl t2) 2 

and X~= -2(slt l  +s2t2) [cf. Eqs. (3.6) and (2.9)]. In Eq. (3.8), Z(() is the 
plasma dispersion function resulting from the integral over the z direction, 
defined, for I m (  > 0, by ~3~ 

1 f+oo e -x2 
Z ( ( ) = ~ j  o~ d X x - ( '  I m ( > 0  (3.9) 

The function Z(() can be analytically continued (3~ in the whole complex 
( plane using the fact that for Im ( < 0, 

Z(~)= -Z(-~)+27~1/Zie-r I m ( < 0  (3.10) 

so that Z(() is an analytic function of ( for all (, i.e., no cuts or poles occur. 
There is, however, an essential singularity in Z(() when Im ( ~  -0% due 
to the term exp( - (2 )  in Eq. (3.10). 
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When I~[ ~ oe and Im if>O, Z(~) decays to zero, according to the 
asymptotic expansion 

i Z(~)=  ~ ,=0,1 .... ~ ,~2----~, I m ~ > O  (3.11) 

while for any finite ff, Z(~) can be obtained, numerically, from the 
absolutely convergent series expansions 

I; t Z(~)=i7~1/2 F(n/2 + 1) =i~zl/2e ~2- 2~ (3.12) 
~=o .=o (3/2). 

We also need that ~3~ 
d 

Z ( f f )  = - 2  - 2 f fZ (~ )  (3 .13 )  

for all ~. 
In Eq. (3.8) we evaluate the derivatives with respect to Sl, s2, tl, and 

t2 and express the derivatives with respect to ul and u2 in terms of 8/0~. 
The result vanishes, except when ml = m2, i.e., 

Aj,(~) = [~ml ,m 2 Cjl 
M i n ( l l ,  12) r l  q-  r 2 

x Z q( l l ,12;ml;2)  Z P(r l , l l ; r2 ,12;s)  
3. = [ ro l l  s = 0 

k\ax] \-~] (1+~) ",+'2+~/~z(~(l+~)~/~+x)~=~=o 
(3.14) 

Here, Min(/1,/2) is the minimum of ll and 12, 

(_?+,2 
Cjt = 2t~+t2 

(3/2 + tl/r~ (3/2 + t21r2(11 + m,)! ( l l -  ml)! It2 + ml/! ( t~-  ml)!~1,'2 
• ) rl! r2! (1/2)l 1 (1/2)l 2 

q(ll, /2; ml ; 2)-- 
4a(1/2);~ 

(/1--2)! (/2--2)! (Z+ml) !  (2--ml)!  

and 
s ( _ r l ) q ( _ r 2 ) s _ q  

p(rl,  ll ; r2, 12; s) = ( - ) "  
q=O q! (s - q)! (ll + 3/2)q (12 + 3/2),_ q 

(3.15) 

(3.16) 

(3.17) 
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We remark that for the special cases when rl = r2 = 0 and ls = 12 = m l  = m2 
one has from Eqs. (3.14)-(3.17) that Air(if) =Z(~  ). For all other cases we 
calculated Ajt(~ ) in two ways, based on the expressions for Z(~) given by 
Eqs. (3.13) and (3.11), respectively, which are relevant for two different 
regions of ~ values. 

First, using Eq. (3.13) in Eq. (3.14), one finds 

Aj,(() = (~m~,m2 Cjl{ O}l)(~) + B(2)(~) Z ( ~ ) }  ( 3 . 1 8 )  

where B~])(() and B}~)(() are polynomia in ~ given by 

ll+12-2Iml] r l + r 2 + # -  1 
B~])(r --- ; E E 

# =  Ill--/21 n~> (#-- 1)/2 
A/1=2 

• q (11, I2;ml; 11+12-~) 2 S~162 2~-~ (3.19) 

and 

ll+12-2lmll r l+  r2 +,u 

U = I Ii 121 n >/•/2 
AI~=2 

( [ l+~- -~ )S (2 ) ( r1 , l l ; r2 ,12 ;# , lT )~2n-~  ( 3 . 2 0 )  xq  11,12;ml; 

with the integer variables/z and n varying in steps of 2 and 1, respectively. 
In Eqs. (3.19) and (3.20) 

S ( 1 ) ( r l ,  l l ,  r2, 12; 1/, r/)  

r~+r2+~ ( 1 )  (3.21) = ~ S(2)(q'll;r2'12;t~'k) -2 k - . -1  
k = n + l  

and 

S(2)(q, ll, r2, /2; /.t, k )  

~ --I [ ~[ rl r2 p+q 

- 2------7-~ ~ Z y'  
p ~ O  q = 0  t=O 

( - - r l ) p  ( - - r 2 ) q  ( - P - q ) ,  [ (F+/~  +/2)/2 + 1 - k +  t]p+q , 

p! q! (I 1 + 3/2)p (12 + 3/2)q t! 4'(/~ - k + t)! ( 2 k -  2t - / t ) !  

(3.22) 

where it is understood that 1/n! = 0 when n is a negative integer. 
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Thus, in Eq.(3.18), B):)(() is a polynomial in ~ of degree 
2r1+2rz+l l+lz-21rn11-1 and B}2)(~) a polynomial of degree 
2rl + 2r2 + ll + 12 - 2 Imll. When ll + 12 is even, B}])(~) contains only odd 
powers of ~ and B}/2)(() only even powers of (, while, when l~ + 12 is odd, 
B}])(~) contains only even powers of ( and B}])(~) only odd powers of (. We 
remark that Eq. (3.19) does not apply to the special cases discussed above, 
i.e., r 1 = r 2 = 0, I~ = l~ = ml = m2, since 2q  + 2r2 + l~ + l 2 - -  2 ]m~l - 1 = - 1  
then. 

Second, we use Eq. (3.11) for Z(~) in Eq. (3.14). Then, for Im ~>0 ,  

11+12--21ml t  oo 

A.(~) = {~ml ,tt~ 2 Cjl ~ 2 
,u  = I l l  - -  121 n = O  

A,u = 2 

( 1 1 + 1 2 - - # )  T ( r l ' l l  xq ll,12;rnl; 2 
1 

;r2,12;ll, n) ~2n+~+l (3.23) 

with 

,,+r2+, ( 1 )  (3.24) T ( r l ' l l ; r ; ' 1 2 ; # ' n ) = -  ~ S(2)(rl'I1;r>12;#'k) 2 k+~ 
k > ,u/2 

where the integer variables # and n vary in steps of 2 and 1, respectively. 
Therefore, when Im ( > 0 and ~ --* 0% all As~(~ ) decay to zero proportional 
to 1/( Ilk-t21 + 1 

We have used Eq. (3.18) to calculate A:~(( ) for finite, not too large, 
values of ~. For very large ~ with I m p > 0  both polynomia Bs(~)(~ ) and 
B}2)(~) in Ast(~ ) diverge and Eq. (3.18) can no longer be used to obtain 
Ajt(~) in practice, since the Aj~(() are very small then [cf. Eq. (3.23)]. 
Instead, when I m ( > 0  and ~-+oo we used Eq. (3.23) for Ajt(~). When 
Im ( < 0  and ~ oo we used [cf. Eqs. (3.10) and (3.18)] 

Ajl(~) = ( _ )It + 12 + 1Ajl( _ ~) 

+ 6m~,m2 Cjt2rd/2iB}~)(() e , I m p < 0  (3.25) 

where Ast(-~) decays to zero for ~--+ oe [cf. Eq. (3.23)], since I m - ~  > 0. 
We remark that the second term on the right-hand side of Eq. (3.25) 
strongly diverges when Im ~ - + - o o  and describes the approach to an 
essential singularity of Ajl(() at Im ~ -- -oo .  The relevance of these essential 
singularities at Im ~ = - o e  in all Ajl(~) will be discussed in Section 4.4. 
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4. T H E  M A T R I X / ~  

In this section we determine the matrix elements s ) defined by 
Eq. (1.13), i.e., defined by 

nj , (k )  = * ( ~rl,ll,ml(C ) Ak @r2,12,m2(e ) ) (4.1) 

where j =  (rl, ll, ml) and I= (r 2, 12, m2) and z/k is given by Eqs. (1.5) and 
(1.6). We need the fact that the first two polynomia in the set {~bi(vl) } are 
given by [cf. Eqs. (1.14) and (2.2)] 

~ 1 ( v i )  = ~ o , o , o ( e )  = 1, 

= ( m ~  1/2 
~2(Vl)-=~tO,l,O(e)=21/2c z \~BT j Vlz (4.2) 

Then, as discussed before, (23) the second term on the right-hand side of 
Eq. (1.5) contributes only to the 1,2 element of s in Eq. (1.13) and 
cancels the contribution of Ak. In addition, it has been shown that (9'23) 

Qjl(k) = g21+(k) = 0 (4.3) 

for all j =  1 ..... oQ. Thus, it suffices to consider the s ) with j or l~>2, 
which are given by 

s = (~rl,ll,mt(e) Ak~r,,l,,m~(e)), j, l>~ 2 (4.4) 

i.e., by Eq. (4.1) with Ak replaced by Ak, since the second term on the 
right-hand side of Eq. (1.5) does not contribute. 

The binary collision operator Ak consists of four terms, 

Ak = - A  ~1) + A (2)- A[ 3) + A[ 4) (4.5) 

given by [cf. Eq. (1.6)] 

A(1) = 0 " f dff f dr2 ~(/32)lu ff[ 0(u if) 

f d8 f d% ~b(v2)]v12..[ 0(v12. r b~ A(2)= 

(4.6) 
A~3) a j d8 [exp( -  ik.  a)] j dv 2 ~b(v2) [v~2" r a) P12 

= a f d8 [ e x p ( - i k .  ~)] f dv 2 ~b(v2)Iv,g" ~l 0(u "if) b,~P12 A(k 4) 
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where P~2 replaces vl by v2 in functions of v~, and b~ replaces v~ and v2 by 
b~v~ = v] and b~v 2 = v[, respectively. Thus, 

t2j,(k) = -s + ~}~)-  ~2}3)(k) + O}r (4.7) 

with 

(~]rt,ll,mt(C) A k ~lrz,12,rn2(C ) ) (4.8) 

where i =  1, 2, 3, 4 and where for i =  1, 2, A~k ~) = A  <z) and s (2J~) do 
not depend on k. 

Next we substitute Eq. (2.10) into (4.8), so that 

O~j~(k) = P,  P2Q,Q2G~i)(sl ,  t l ,  ul ;s2, t2, u2) (4.9) 

with the differential operators P1, P2, Q~, and Q2 given by Eq. (3,7) and 

G(i)(s1, ta, l/1; $2, t2, u2) 

= ( {exp[- - u l  c 2 + siT(t1)* "el  } A~/~ exp[ - u 2 c  2 + s~T(t2)" e] )1 

(4.10) 

with e = (m/2kB T) ~/2 vl as before [cf. Eq. (2.1)]. 
We substitute Eq. (4.6) into (4.10), use the reduced total velocity 

V = (m/8kBT)  1/2(vl + v2) and the reduced relative velocity v = 
(m/2kBT)  1/2 ( v 1 - % )  as integration variables, and introduce r  +u2 
and X = sl T * ( t O  + s2T(t2) as before [-cf. Eq. (3.6)]. The result is 

G~ki)(sl, ta, ul ; $2, 12, //2) 

1 {, 

- nto(8rc) m j d6 

• ((Iv" 61 0(v' 6) e x p [ -  ~V 2 -  ~v2/4 + X .  V + E~/)(v, V)] ) v ) v  

(4.11) 

where to = ml/2/[4na2(TzkBT)l/2] is the Boltzmann mean free time between 
collisions, 

( " " ) v  = (27z)-3/2 f dv e v2/2... 

( . . - ) v  = (7z/2) -3/2 f dV e -2V2 ..- 

(4.12) 
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and where 

E~l~(v, V) = -4v"  V + �89 v 

E{2)(v, V)=E<l)(v, V ) +  2 u 2 ( v ' ~ ) ( V ' 8 ) - s 2 [ T ( t 2 ) ' 6 ] ( v ' ~ )  (4.13) 

E(3)(v, V)  = - i k "  ~ + (u2 - ul) v" V + �89 [s1T *( t i )  -- s2T(t2)] " v 

E(4)(v, V) = E(S)(v, V) - 2u2(v �9 8)(V" ~) + sz[T(t2) " hi(v" 8) 

We note that of the four E(~ V), only E(3)(v, V) and E(4)(v, V) depend 
on k. 

In Eq. (4.11) we perform the integrals over the three components of V 
and over the two components of v orthogonal to ~, which are all of the 
Gaussian type. For the integral over v. 8 we use 

2 dyye  y2-2~Y= tFl(1, 1/2;x2)-~i/2xe~2 (4.14) 

where 1F~(1, 1/2; x 2) is the confluent hypergeometric function, defined in 
ref. 3 1. As a result, 

G~l)(sl, tl, ul ; s2, t2, /X2) 

_ (1 + 4/2) 1/2 e~2+~)a2 
nt0(1 + 4) 2 

1 1 8)2/ (4.15a) 
/ 

G(2)(S1, t l ,  H1 ; $2, t2, /g2) 

= (1 q- 4/2)  1/2 e(2+ ~_)A 2 

nto(1 + 4)(1 + 4 + UlU2) 

( x d8 { e x p [ - ( A .  ~)2] }~ gl 1,2; �9 

G(3)($1,/1,  u l ;  $2, t2, u2) 

(1 + 4/2) 1/2 

nto( 1 + 4 + UlU2) 2 

{ ( ,1  ) 
xl~d84rc3 cos (k '~ )~Fx  2 ' 2 ;  (B '~)2  

- i~ 1/2 sin(k �9 ~) B" ~ /  (4.16a) 
) 

822/54/1-2-19 
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G(k41(sl, tl, Ul; s2, t2, U2) 

(1 + ~/2) '/2 

nto(1 +4)(1 + ~ + ulu2) 

x~-~ d8 c o s ( k . ~ ) e x p [ - ( B . 8 ) 2 ] l f l  1,~; 

i~ 1/2 sin(k �9 ~) A.  8 exp[(A �9 8) 2 -  (B" 8)2]} 

where G ~  G~ 1) and G (2~= G~ 2~ do not depend on k and where 

A = 1( I  --}- ~ ) -  1/2 (2 + 4) -1/2 X 

B=�89 + { + u l u 2 ) m  ( 2 + { ) - m  

x [(1 + u2) s l T * ( t ~ ) -  (1 + ul) s2T(t2)] 

transformauon In Eqs. (4.15), (4.16) we have used the Kummer .. _~3~) 

(4.16b) 

(4.17) 

IFl(a, b; z) = exp(z) 1F~(b-a, b; - z )  

with a = 1 and b = 1/2, to transform 1F1(1, 1/2; z) into IF~(-1 /2 ,  1/2; - z ) .  
The angular integrations in the G~ i) are performed in a different 

manner for i=  1, 2, 3, and 4, respectively. Therefore, in the remainder of 
this section, we consider the four G~ i) and O~[)(k) with i =  1, 2, 3, and 4 
separately. 

(a) The case i=  1 

In Eq. (4.15a) for G (~) we directly perform the angular integration over 
8, using that, for any A, 

1 
f d8 (A. 8) 2t 1 (A2) ~ (4.18) 

4n 21 + 1 

so that, with Kummer's transformation, 

G(1)(sl, tl, ul ; s2, t2, U2)= 
(1 + 3/2) v2 

nto(1 + 3) 2 

Then we use that 

A 2 = sis2(1 + tit2) 2 
(1+~)(2+~) 

3 2 e(I+r ) (4.19) 

(4.2o) 

as follows from Eqs. (4.17), (3.6), and (2.9). 
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Thus, G (~) depends on s~,s2, tl, and t 2 only through S1S2(1 +t~t2) 2. 
For any such functions f we have the relation [cf. Eq. (3.7)] 

P 1 P 2 f ( s I s 2 ( 1  ~ - t l t 2 ) 2 ) = ~ l l ' 1 2 ~ m t ' m 2 - 4 ~  2 l t x = 0  

Therefore, 

O j ( l )  ~.  I ( 3 ) ~ m l m 2 0 [ t , 1 2 Q 1 Q 2 ( L ~ [ I  
' 47Znto 2 l~ ' \~XJo 

(1+4/2)'/2 +~' ( 3 x ) ( 
x e x/~2 ,F~ 2, 2; (1 + ~)(2+ r 

We write the result as 

1 6m1,m2 ~1) , ll) (4.23) - -  (~ll,12J ( r l , / l "  r 2, 
= n t 0  

where j ( l )  is dimensionless and does not depend on m~ or m 2. 
In order to perform the derivatives with respect to u~ and u2 in 

Eq. (4.22), we introduce, with ~ -- Ul + u2, 

D(rl, ~1; r2, ~2; k, q) 
= ( 3 ~ r l  ( 3 ~ r 2 ( l  ~-gl l )r l+~l(1Ji-T,  t2) r2+22 

\QU,/o \~u2J o ( l q  ~ ) k ( l q  ~/2) q-1/2 
Min(r l , r2 )  v I t r2-- t 

t = 0  j r = 0  j 2 = 0  

x(k)~ - -k--q+~l  + - k - q + ~ 2 +  q -  
Jl J2 rl 4- r2 -- Jl -- J2 2t 

x [t! Jl!J2! (rl - t -J l ) !  (r2- t - j2)!  2~' + ~2-J,-J2-2t]- 1 (4.24) 

SO that one is led straightforwardly to the final result for J~), i.e., 

J(1)(rl, ll ; r2, /1) 

= ll! rl!r2! +11 + l l  
rl r 2 J  

" (-- 1/2) q ( _  1) 

• q! (l~-q)! (3/2)q \ 2_q 

• +~;r2, l~ +~;l~+ 2, q) (4.25) 
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We remark that j(1) is real and symmetric in r 1 and r2, i.e., 

J(1)(rl, ll ; r2, Ix)= J(1)(r2, l l ;rl ,  ll) 

(b) The case i = 2  
We show in the Appendix that for any two (complex) vectors A and B 

one has that 

d ~ e x p [ - ( B ' 6 )  211F~ 1,~; 

Thus, for the special case that A and B are given by Eq. (4.17) one has 
[cf. gqs. (4.17), (3.6), and (2.9)] 

B2= - (1  + ~ ) A  2 (4.27) 

so that A 2 - B 2 = (2 + ~) A 2. Therefore, 

G(2)(sl, tl ul;s2, t2, u2)=G(4) ~s t l ,u l ;s2 t2 u2) (4.28) k=0 ~, 1~ ~ 

as follows from Eqs. (4.15b), (4.16b), (4.26), and (4.27). As a consequence, 
the matrix elements f2J~) are given by [cf. Eqs. (4.9) and (4.28)], 

Q~2)= f2j(4)(k = 0) (4.29) 

i.e., by the matrix elements f2}4)(k) for k = 0. The matrix elements fD~)(k) 
will be discussed below for general k, including k = 0. 

(c) The case i = 3  

To evaluate the angular integrations in Eq. (4.16) for the cases 3 and 
4, we need the integral 

I(k) = f d6 [exp(ik �9 ~)] f(s~T*(t~).  6, $2T(/2) ' 6) (4.30) 

where f ( x l ,  x2)is a function of Xl = s lT*( t l )"  6 and x2 = s2T(t2)" 6. Then, 
in order to perform the derivatives with respect to s~ and s2, we use that 

~S1/]O ~ $ 2 / 1 0  ~ X 2 ]  0 f(xl, X2) 

x f d 6  [exp(ik" ~)][T*(t~)" 6] 4 IT(t2). 6] '2 (4.31) 
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We obtain from Eqs. (3.7) and (2.7) that 

\OXa/o kc3x2/o f ( x l ,  x2) 

x Y,, . . (4.32) 

Therefore, by expanding 

exp(ik" or) = ~ [4~(2n + 1)] 1/2 inj,(ka) y(o)(~) 
n=O 

where the j,,(x) are spherical Bessel functions, (29'31) we obtain 

(• 
; ,P2I (k )  = Oml,m 2 ~(~Xl/]0 ~/~X2J 0 f ( X l ,  X2) 

ll +12 
x ~ M(l l ,12;ml;n) jn(ka  ) 

n = lit --/21 
An=2 

Here 

(4.33) 

M(ll ,  I2; m; n) 

= (_)m [4~z(2n + 1)] 1/2 i" f d6 Yli-m)(~) y}~n)(~) y(o)(6) (4.34) 

Thus, the coefficients M(/1, 12;m;n) are directly related to Wigner's 3-J 
symbols, which give the result of an angular integration over the product of 
three y~m)(~) with total angular momentum J =  l 1 + l z-q- n and for which 
explicit expressions exist for all m. (28'29) We note that M(ll,  12; m; n) - -0  
when J = Ii + 12 + n is odd, that 

M(ll, 12; m; 0) = $h,12 (4.35) 

and that ~28) 

M(ll,  12 ; 0; n) 

= i"[-(2/i + 1)(2/2 + 1)] 1/2 (2n + 1) 

( J -2 l~ ) ,  ( J - 2 / 2 ) '  ( J -  2n)' I (J/2)! ]2 
• (J + 1)! (J/2 - ll )r (J/2 --/2)! (J/2 - n)! 

(4.36) 



292 de Sehepper eta l .  

when J =  ls + 12 + n is even. As a consequence, the variable n in Eq. (4.33) 
varies in steps of two (i.e., An = 2), being either even or odd depending on 
whether l s + l 2 is even or odd, respectively. 

Using these results, we consider the matrix elements [-cf. Eq. (4.9)] 

f2}3)(k) = PIP2Qs Q2G(k3)(ss, ts, Ul; s 2, t 2, 112) (4.37) 

with G~ 3) given by Eq. (4.16). G~ 3~ is of the form given by Eq. (4.30) for I(k), 
since 

B" ~= fll Xl + fl2x 2 (4.38) 

with xl = s lT*( t l )"  ~, x2 = s2T( t2 ) "  ~, and 

/ ~ l = � 8 9  -s/2(2+~) 1/2(1+u2) 
(4.39) 

/ ~ 2 = - � 8 9  1/2 ( 2 + ~ ) - l / Z ( l + u , )  

Therefore, 

G(k3)(sx, ts, us; s2, tz, /'/2) 

(1 + {/2) 2 
= nto(1 + {  +ulu2)  2 

1 ~ ; - ( f l l x ,+ /~2x2)2 )  

- i~ 1/2 sin(k �9 ~)(Bsxs + B2x2) 1 (4.40) 

Due to Eq. (4.33) we may write the result for c~(3)(k) as a~jl 

1 
= -~o (}mbm2J(a)(rs' /S; r2, 12) 

Ii + 12 
x ~ M(ls,/2; ml ; n) j,(ka) (4.41) 

n = Ill /21 
, 4 n - 2  

Then, when l I + 12 is odd, the f2j~ or J(3~(r s,/1; r2, /2) are determined by 
the second term on the right-hand side of Eq. (4.40) alone, i.e., by 

J(3)(rl,/1; r2, 12) 

= ~ QIQ2 \~?Xs/o \OXz/o 

(1 if- {/2) 1/2 
X (1  -'~ ~ -t- U s U2)  2 ( /~1XS + ] ~2X2) '  (/t + 12 is odd) (4.42) 
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It follows from this and Eqs. (3.6), (3.7), and (4.39) that j(3) is non- 
vanishing only when r l = r  2=0,  11=0, 12=1 or r 1 = r 2 = 0 ,  11=1, 12=0. 
Since these cases refer to the 1,2 and 2,1 elements of f2jl(k ), we have 

J(3)(rl, ll; r2, 12) = 0 

Q}~)(k) = 0, l l+12odd;j , l>~2 (4.43) 

for the part of the matrix g2}~)(k) we are considering here, i.e., j, l>~2. 
Therefore j(3) and (2 (3) are nonvanishing only when ll + 12 is even. Then, 
j(3) is determined entirely by the first term on the right-hand side of 
Eq. (4.40). Hence, from Eqs. (4.37), (4.40), (4.41), and (4.33), 

J(3)(rl, 11; r2, 12) 

, 

= 4---~ O~O2 \~X~/o \~X2]o 

( 1 + , / 2 )  1/2 ( 1 12,2; ) 
X (l + ~ + ulu2)21F1 - ( f l l X l  + fl2x~) 2 , Ii + 12 even 

(4.44) 

which is evaluated straightforwardly, with the result 
( _  ).,-,2>/2( 1 

- -  2)rl + r2 + (li + 12)/2 
J(3)(rl, 11; r2, 12)- 2rt+r2+(ll+12)/2{(3)rl + 3 r . (4.45) 

l l ( ~ ) r 2 + l  2 11 r2!} 1/2 

(I1 + 12 is even) 

We remark that j(3) is real and symmetric, i.e., J(3)(rl, ll;r2, 12)= 
J(3)(r2,12;rl, ll). In addition, for k--*0 we have for s that [cf. 
Eqs. (4.41) and (4.35)], 

~2J('? ) (0)  = ~ t  0 (~ml,m2 611d2J(3)(rl, ll; r2, li) (4.46) 

since j o ( 0 ) = l  and j , ( 0 ) = 0  for n>~l, (31) so that for k = 0 ,  0)3)(0) is 
diagonal, not only in ml = rn2, but also in ll = 12. 

(d) The case i = 4  

Here we consider 

(2)4)(k) = P1 P2 Q1 Q2 G~4)(sl, t~, ul ; s2, t2, u2) (4.47) 

where G~ 4) is given by Eq. (4.16) and is of the form given by Eq. (4.30) for 
I(k), using that 

A .  ~ = c~(xl + x2) (4.48) 
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with x 1 = s lT*( t l )"  8, x2 = s2T(t2)" 8, and 

= 1(1 + ( ) m  (2 + ( ) -  1/2 (4.49) 

Thus, we may write the result as 

1 Oml.m2J(4)(rl, /1; r2, /2) 
) = =to 

11+12 
x ~ M(ll, 12;ml;n)jn(ka ) (4.50) 

n-- [ll 121 
An=2 

We distinguish between the cases that Ii + 12 is either odd or even. 
First, when 11 + 12 is odd, we only need the second term on the right- 

hand side of Eq. (4.16) for G~ 4), so that 

J(4)(rl, ll; r2, 12) 

- 1  (__~__0 ~" ( c3 ~ '2 

- 4 -7~  Q1 Q2 Ix,6qX 1 /o  ~ax2 , ]  o 

(1 + {/2) m 
X O{(X 1 "4- X2) 

(1 +~)(1 + ~+  ulu2) 

• exp [-~2(x1 + x2) 2 - (//i xl +//2x2) 2 ] (ll + 12 is odd) 

(4.51) 

with ~, //1, and//2 given by Eqs. (4.49) and (4.39). The derivatives in this 
equation can be performed straightforwardly, with the result 

__ ( .  (~2rl +.~ ll , 2r2 +..~12 : 1  (~2rl +_ ll ,2r2 +12 : i ~ 
J ( 4 ) ( r l '  l l  ; r 2 '  12) - -  \(2r2 + 212 + 1) 1/2 + (2r, + 2l I + 1)1/2/  

( 11+12-1) (ll+12is~ (4"52) x E  rl, r2; 2 

where (ll + 12 - 1)/2 is a nonnegative integer and 

rz;l)=(--)r+l ( 7r( l+R)r  ,]1/2 ( l + r ) , + l  E(rl ' \(3/2+R+l)r] 2r+'+1(3/2), 

x ~ (-R)j((r-l-1)/2)j((r-l)/2)j (4.53) 
s=o jl(l+r)j(1/2-R--l)j  

with R = Min(rl,  r 2 ) ,  r = Ir I - r 2 1  , and where l is an integer. 



Equilibrium Time Correlation Functions 295 

Second, when l 1 + 12 is even, we only need the first term on the right- 
hand side of Eq. (4.16) for G~ 4), so that 

J ( 4 ) ( r l ,  l l ;  r2, 12) 

L ( •  /1 +  /2),J2 
4rcQ~Qzk~xl/o \~x2/o (1 +4)(1 +~ +u~u2) 

/1,-~;1 2 x2)2) x e x p [ - ( f l l x l  ql- f12x2) 2] 1F1 ~ ~ (xl + 
/ 

(11 + 12 is even) (4.54) 

Performing the derivatives leads to 

J(4)(rt, [~ ; r2, /2) 

[2 '1 + t2r 1 ! r 2 ! (3/2)q + a(3/2)~2 + ,2] 1/2 
11 12 

x Z' Z' (_)(.1 
h i = 0  n2=0 

�9 (li + 12 n l - -n2 ) /2n l  ! 712! 

( l i+12+nl - -n2-1  l l + 1 2 - n l + n 2 - 1  t~l+n2 ll+12) 
xD rl, 2 ;r2, 2 ; 2 ' 2 

(/1 h- l 2 is  even) (4.55) 

where the primes on the summation signs mean that only terms with 
n 1 + n  2 even have to be taken into account and where D(q, cq; r2, a2; k, q) 
is given by Eq. (4.24). 

We note that both for l~ + 12 odd or e v e n ,  J(4)(r~, l~;r2, I2) is real and 
symmetric, i.e., j(4)(q, lx; r2, 12) = J(4)(r> 12; q ,  11). Also, from Eqs. (4.50) 
and (4.35) it follows that for k ~ 0 

D ( 4 ) ( 0  ) =__1...1 6m I m2 611, ,2 j (4)( r l ,  ll; r2 ,  /1 )  (4.56) 
nt o , 

where J(4)(rl, l~;r2, l~) is given by Eq. (4.55) with I~ = 12. 
Collecting the results obtained in this section yields for the matrix 

elements t2~,(k) with j =  (r~, 11, m~) and l =  (r2, t2, m2) that f o r j  or l~> 2, 

(2j,(k) =~'~1'm2 ~6a,t2jS(ra, /1; r2, ll) 
nt o 

'1 + '2 ) 
+ja(q,  l~; re, 12) ~ M(l~, 12;m,;n)j,(ka)t (4.57) 

n = 1ll -- '21 
A n = 2  
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where [cf. Eqs. (4.7), (4.23), (4.29), and (4.56)] 

jS(r l ,  ll; r2, ll) = - J ~  ll; r2, 11) + J(4)(ri, 11; r2, ll) (4.58) 

with j(l) and j(4) given by Eqs. (4.25) and (4.55), respectively, and 

Jd(rl ,  ll; r2, 12) = --J(3)(rl, ll; r2, I2) + J(4)(rl,/1; r2, 12) (4.59) 

with j(3) given by Eqs. (4.43) and (4.45) and j(4) given by Eqs. (4.52) and 
(4.55) and where M ( l l ,  12; m l ; n )  in Eq. (4.57) is given by Eq. (4.34). 

For k ~ 0 one has 

~2fl(O) = 1_}_ 6mi m2 Oh 12J(r1 [1 ; r2, /1) (4.60) 
nto ' " ' 

with 

J ( r l , l l ; r 2 ,  l l )=JS( rx ,  l l ; r2 ,  l l ) q -Ja ( r l ,  l i ; r2 ,  ll) (4.61) 

the reduced matrix elements of the Boltzmann collision operator 
AB =l imk~0 Ak considered by Foch and Ford. (25) For k--, o% all spherical 
Bessel functions in Eq. (4.57) decay to zero, so that 

1 (~ml mz61, . tJ ' (r l ,  It; r2, 11) 
s jt( ~ ) = n t---oo ' 

(4.62) 

where the j s  are the reduced matrix elements of the Lorentz-Boltzmann 
collision operator A ' = l i m k ~  Ak relevant for the description of self- 
diffusion processes in the fluid. (9) 

We conclude that the t-2jt(k ) are diagonal in ml = m2 for all k, diagonal 
in 11=12 for k = 0  (i.e., the Boltzmann limit) and k =  oo (i.e., the 
Lorentz-Boltzmann limit) and depend for intermediate k on rn 1 = rn2 only 
through the coefficients M ( l l ,  12; m l ;  n) [cf. Eq. (4.57)]. 

5. D I S C U S S I O N  

We have derived general expressions for the M x M matrices s~j~(k, z) 
[cf. Eqs. (3.2) and (3.18)] and 121~(k ) [-cf. Eq. (4.57)] for j =  (rl, ll, ml) and 
l--(r2,  12, rn2). These matrices are needed to determine the one-particle 
time correlation functions Fjl(k, t) in a hard-sphere fluid using the BGK 
method explicitly [cf. Eqs. (1.15) and (1.16)]. 
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The results given here reduce to those used before (11"1z32~ to calculate 
the nine correlation functions Fjl(k, t) with j or l = 1, 2, 3. Here the label j 
or l =  3 refers to the third polynomial in the set {(~bj(vl)}, i.e., 

~b3(Vl) = ~l.O,0(e) = (~)1/2 (~ - -  e2) = ~66 ( +  v12 -- 3 ) (5.1) 

This function represents the local microscopic temperature fluctuations of 
the fluid. These nine correlation functions Fjz(k, t) (which all have quantum 
number m = 0) are needed to understand the time behavior of the inter- 
mediate scattering function F~(k ,  t), which is the function relevant for 
neutron or light scattering experiments on simple dense fluids. O1'12'2~ 

We now discuss the properties of the Fjl(k, t) as to: (1) their con- 
vergence with respect to the label M in the BGK method; (2) the transition 
to ideal gas behavior at large k; (3) the transition to hydrodynamic 
behavior at small k; and (4) their description in terms of eigenmodes. 

5.1. C o n v e r g e n c e  

To study the convergence of the BGK method for the calculation of 
the nine Fit(k, t) with j or l =  1, 2, 3, one needs to order the polynomia 
Or.t(e)= Or,t,0(C) [Cf. Eq. (2.12)] with respect to the quantum numbers r 
and L To do so, we have used three criteria. ~ 12~ 

5.1.1. Lorentz-Boltzmann Ordering. In the Lorentz-Boltzmann 
ordering (LB), the label j in the set {~bj} corresponds to the labels r, l in 
the set {Orj(C)} in such a manner that the reduced diagonal elements 
J'(r, l; r, l) of the Lorentz-Boltzmann operator A s decrease with increasing 
j = (r, l). In Fig. 1, we show the J'(r, l; r, t) as a function of r and l. We see 
that J" decrease at fixed r with increasing l and at fixed l with increasing r. 

Thus, the ordering of the q~r,t(c) can be read off from Fig. 1 and 
follows globally the rule that the "lowest" (r, l) come first and, more 
particularly, that the lowest r + l come first (cf. Fig. 1). The results are sum- 
marized in Table I, where the first 24 polynomia in the Lorentz-Boltzmann 
ordering are given. 

5.1.2.  Boltzmann Ordering. In the Boltzmann ordering (B), the 
{~j} are ordered such that the reduced diagonal elements J(r, l; r, l) of the 
Boltzmann operator A B decrease with increasing j =  (r, l). 

In Fig. 2, we show J(r, l; r, l) as a function of r and l, where we see that 
J decreases at fixed r with increasing 1 and at fixed l with increasing r. 
Thus, again, the "lowest" (r, l) (but not the lowest r + l) come first. The 
results are also summarized in Table I. 
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Fig. 1. The reduced diagonal elements j s= J~(r, l; r, 1) of the Lorentz-Boltzmann operator 
[cf. Eqs. (4.58) and (4.62)] as a function of l at various values of r (crosses). The curves 
connect the J" with the same r = 0, 1, 2,..., 8 as indicated at the end of each curve. 

We observe in Table I that  the LB and B orderings are very similar. 
Thus, for example, in the B G K  approximat ion  of order  M =  9 all nine 
po lynomia  in the LB and B orderings are the same, or, when M = 24, 21 of 
the 24 po lynomia  are the same in the LB and B orderings (cf. Table I). 

5.1.3. A l t e r m a n  Order ing .  In the Alterman ordering (A), the 
{~bj} are ordered such that  the eigenvalues 2(r, l) of the reduced Bol tzmann 
opera tor  ntoAB,  as computed  by Alterman etaL,  (33) decrease with 
increasing j = (r, l). 

In fact, for each 1= 0, 1 ..... 13, the 2(r, l) are the 30 eigenvalues 2e(I) 
with i =  1 ..... 30 of the 30•  30 matrices J ( r t ,  l;r2, l) with rl or  
r2 = 0, 1,..., 29. Here the labels r in 2(r, l) and i in 2~(I) are related to each 
other in such a manner  that  r refers to that  polynomial  ~br. l that  contributes 
most  to the eigenfunction corresponding to Zi(l ). Therefore, in 2(r, l), while 
l is a "good"  quan tum number,  r is an "approximate"  quan tum number,  



Equil ibrium Time Correlation Functions 299 

Table I. Quantum Numbers r and / of the Polynomials q)r.t(c) = qJr, t,o(C) 
[Eq. (2 .12)]  and Corresponding Values of JS(r,/; r , / )  (Fig, 1 ), J(r, I; r , / )  

(Fig. 2), and A(r, I )  (Section 5.1.3) ~ 

r l J~(r, l; r, l)  J(r,  l; r, l)  2(r, l) j(LB) j(B) j(A) 

0 0 0 0 0 1 1 1 
0 1 -0.6667 0 0 2 2 2 
1 0 -0.6667 0 0 3 3 3 
1 1 -0.9833 -0.5333 -0.4975 4 4 5 
2 0 -1.0333 -0.5333 -0.4746 5 5 4 
0 2 -1.0667 -0.8000 -0.7593 6 6 8 
2 1 -1.2478 -0.8571 -0.6994 7 7 7 
1 2 -1.2619 -0.9762 -0.8353 8 9 11 
3 0 -1.3076 -0.8857 -0.6866 9 8 6 
0 3 - 1.3286 - 1.2000 - 1,0023 10 13 21 
2 2 - 1.4607 - 1.1795 -0.8981 11 12 14 
3 1 -1.4733 -1.1224 -0.8173 12 10 10 
1 3 -1.4871 -1.3135 - 1.0229 13 14 23 
0 4 -1.5175 -1.4540 - 1.1120 14 18 43 
4 0 -1.5347 -1.1623 -0.8096 15 11 9 
3 2 -1,6467 -1.3758 -0.9484 16 16 16 
2 3 -1.6514 - 1.4600 -1.0430 17 19 26 
0 5 - 1.6665 -1.6349 -1.1703 18 25 >60 
1 4 -1.6673 -1.5650 -1.1185 19 22 46 
4 1 --1.6719 -1.3506 -0.8955 20 15 13 
5 0 --1.7324 -1.3952 -0.8904 21 17 12 
0 6 --1.7927 -1.7770 -1.2046 22 31 >60 
3 3 --1.8111 --1.6133 --1.0614 23 24 30 
1 5 --1.8147 -1.7558 --1.1727 24 29 > 60 

O AIso given are the corresponding labels j of ~bj(vl)=~r,/(c ) when one uses the 
Lorentz-Boltzmann [ j (LB) ] ,  the Boltzmann [ j (B) ] ,  or the Alterman [ j ( A ) ]  orderings, 
respectively. 

since it refers to the polynomial qsz only in as far as ~ . t  gives the most 
important contribution to the eigenfunction of A B corresponding to the 
eigenvalue 2(r, I). 

The result of the Alterman ordering of the polynomials ~br, z is given in 
Table I. We observe that the A ordering does not differ considerably from 
the B ordering, and that when M =  24, 17 of the 24 polynomia are the 
same in the LB and A orderings. We also see that, while the LB ordering 
stresses the importance of polynomia with low r + l ,  the A ordering 
emphasizes the importance of polynomia with low l alone. 

5.1.4. Convergence of Correlation Functions. Of the nine 
correlation functions Fjl(k , t) with j or l =  1, 2, 3, only three are inde- 
pendent. 
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Fig. 2. The reduced diagonal elements J=J(r, 1;r, l) of the Boltzmann operator AB 
[Eqs. (4.60) and (4.61)] as a function of l at various values of r (crosses). The curves connect 
the J with the same r = 0, 1, 2,..., 9 as indicated at the end of each curve. Note that J = 0 for 
r = 0 ,  1=0;  r = 0 ,  l =  1; and r =  1, 1=0.  

We have chosen before (11'12"32) to calculate the Fourier transforms of 
three independent correlation functions 

lj-+  
Sj,(k, co)=~--s d te  i~ t) (5.2) 

o{3 

namely those for (j, l )=  (1, 1), (1, 3), and (3, 3). The S/l(k, co) are given by 

S/,(k, co) =-1 Re Gj,(k, z = ico) (5.3) 

with Gjt(k, ico) from Eq. (1.16). We consider now the convergence of the 
S/t(k, co) with respect to M and with respect to the ordering of the 
polynomia. 
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As to the convergence with respect to M, we find for all densities and 
all k that the convergence of the Sit(k, co) is slowest when co = 0. Therefore, 
it suffices to consider the results for the Sjl(k, co) as functions of M for 
co = 0 alone. For  three values of k we show Sit(k, 0)/tE as a function of M 
in Fig. 3 for Vo/V=O.071, in Fig. 4 for Vo/V=0.333, and in Fig. 5 for 
Vo/V=0.625, where Vo/V=mr3/x/2 is a reduced density, with Vo the 
volume of close packing of a hard-sphere fluid. The three densities con- 
sidered here are the same as those in ref. 27 for S11(k, co)= S(k, co)/S(k), 
where S(k, co) and S(k) are the dynamic and static structure factors of the 
fluid, respectively. 

We find that the convergence with respect to M of the Sit(k, 0) is 
almost independent of the density and is mainly determined by the value of 
klE (cf. Figs. 3-5). Here lE=lo/Z and lo = (8kBT/zcm) m to are the Enskog 
and Boltzmann values of the mean free path between collisions, respec- 
tively. The convergence is fastest at small k. Thus, for klE <<. 0.5 the Sit(k, O) 
have converged for M =  55 to at least four significant figures (i.e., to 
0.01%), both in the A ordering (shown) as well as in the LB ordering. The 
convergence becomes slower when klE increases. For  klE = 3 the results at 
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Fig. 3. The reduced Sjt(k , 0)//E as a function of M at the reduced density Vo/V=O.O071 for 
j, l =  1, 1; 1, 3; and 3, 3 (as indicated in parentheses), for (a) k/E=0.5,  (b) 1.77, and (c) 3, 
using the Alterman ordering (dots) and the Lorentz-Boltzmann ordering (crosses). 
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Fig. 4. The reduced Sjl(k, 0)/t E as a function of M at the reduced density Vo/V= 0.33 for 
j, l =  1, 1; 1, 3; and 3, 3 (as indicated in parentheses), for (a) klE =0.143, (b) 1, and (c) 3, using 
the Alterman ordering (dots) and the Lorentz-Boltzmann ordering (crosses). 

M =  55 have converged within about 1% for the LB ordering and within 
about 3 % for the A ordering. The convergence improves again when klE 
increases further (e.g., in the LB ordering to about 0.5% at klE = 50). 

Thus, the correlation functions Sj/k, co) can be calculated with the 
BGK method of order M = 55 for all k, all 09, and all densities with an 
accuracy of at least 1% in the LB ordering or 3 % in the A ordering. That 
the results for the Sit(k, o9) in the A ordering converge slower than those in 
the LB ordering implies that the polynomia with low quantum number l 
alone are less important for the computation of Sit(k, co) than the 
polynomia with low r + l. 

We remark that the convergence of Sll(k, 0) as a function of the 
number of Burnett polynomia used in the explicit calculation (i.e., M in 
Figs. 3-5) is faster than the convergence discussed in ref. 27, where Hermite 
polynomia were used. The reason for this is that Burnett polynomia are 
more economical than Hermite polynomia, since they incorporate the 
cylindrical symmetry in velocity space. 
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5.2. Ideal Gas Behavior 

Next we consider the correlation functions G~t(k, z) with j  or 1= 1, 2, 3 
in the BGK approximation of order M in the ideal gas limit k--* ~ .  To 
study this limit, it is convenient to use the (complex) reduced frequency 

2i ztE ( m )~/2z 
z * - ~ k l  - i  ~ -~ (5.4) 

as a quantity of order 1 and 1/kl~ as a small expansion parameter around 
1/klE = 0. Here t z = to/Z is the Enskog mean free time. We use that in 
Eq. (1.16) for Gjt(k, z) all matrix elements of d ( k ,  z) are small compared to 
those of ~ ( k )  for all z. For, the matrix elements ~t(k)  of the M x M matrix 
~ ( k )  are finite for k ~ ~ ,  so that ~ ( k )  is a quantity of order (klE) ~ [cf. 
Eq. (1.12) and ref. 9]. The elements ~@z(k, z) of the M x  M matrix ~r z) 
in Eq. (1.16), on the other hand, are given by [cf. Eq. (3.2)] 

-2it  E 1 
~,(k, z) = ~ ~zE A:,(C) (5.5) 

822/54/1-2-20 
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where {=z*+O[(klE) 1] Ecf. Eqs. (3.4) and (5.4)]. Thus, ag(k,z)is a 
quantity of order (k/E) -1 and small compared to ~(k) .  Therefore, we can 
write [cf. Eq. (1.16)] 

Gs,(k, z) = {d(k,  z) + d(k,  z) o~(k) d(k,  z) + O[(kl~)-3] }y, (5.6) 

or, with Eq. (5.5), 

-2it  E g}}U)(z*) + O(klE)-2)] 
Gjz(k, z) = ~  IAj,(z*) + klE (5.7) 

where 

gs~ t ' ( z* )= / ,d (oo )A} , ( z* )+  ~ Ajs.(z*).~/,,(oo)Av,(z* ) (5.8) 
~/ ~ I j ' ,l '  

with A}t(z ) = dAjl(z)/dz. 
Thus, the Gst(k, z) in Eq. (5.7) are given by series expansions in terms 

of inverse powers of klE, where the coefficients are functions of z*. The 
leading term ~ A~t(z*) in Eq. (5.7) is the Laplace transform of the ideal gas 
Fit(k, t), as given by Eq. (1.1), with LE(k) replaced by - i k ' v l ,  i.e., by the 
free streaming contribution to LE(k) [cf. Eq. (1.4)]. From this it follows 
immediately that the BGK approximations of order M to the Gjt(k, z) 
(j, l=  1, 2, 3) reduce to their corresponding exact ideal gas values for 
k ~ oo for any fixed M. 

The approach of the Gj~(k, z) to their ideal gas values is given by the 
second term on the right-hand side of Eq. (5.7) [i.e., by the g}~t)(z*)]. This 
term depends on M via d(oo) [cf. Eq. (1.11)] as well as via the three 
M x M  matrix multiplications in Eq. (5.8). By evaluating the g}~)(z*) 
numerically in the BGK method with M ~< 55, we find that the results have 
converged within a few percent for M = 55. This has been reported before 
for ( j l )= ( l l ) ,  (13), and (33). (12'32) 

To get an idea of how fast the approach to ideal gas behavior is, we 
evaluated the g]~)(z*). To do this, we used that 

-2 i tEI  ~bj(vl ) 1 1 ) nz A* ~ ~bt(vl) g)9(z*)= c z - z  1 
(5.9) 

and that 

dAjl(z) = ~ Aj/(z) A/,(z) (5.10) 
dz j ' = l  
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Equation (5.9) follows from Eqs. (1.12), (3.3), and (5.8), while Eq. (5.10) 
follows from Eq. (3.3) and that the {~r,l,m(e)} form a complete set of 
polynomia in e. The expression (5.9) has been evaluated analytically for 
j = l =  1 in ref. 35. We find that our BGK result for g~)(z*) with M =  55 
does not differ by more than a few percent from the exact g~)(z*). Thus, it 
appears that the approach of the Gjt(k, z) to ideal gas behavior can be 
described accurately by the BGK method, at least when M >i 55. 

5.3. H y d r o d y n a m i c  Behavior  

To study the hydrodynamic limit, i.e., the k ~ 0 limit, of the nine 
Gj~(k, z) in the BGK approximation of order M, we rewrite Eq. (1.16) in 
the equivalent but more convenient form 

1 
Gj,(k,z)=Id l ( k ,  ff) - ~.(kiJjl (5.11) 

and consider ~ ( k )  and ~ r  for k ~ 0  and z of order k ~ k, or k 2. 

(a) The MxM matrix ~ ( k )  in Eq. (5.11) is a quantity of order k ~ 
when k --+ 0, For, the Boltzmann collision operator A B = limk ~o ,4k has 
three longitudinal (m = 0) eigenfunctions with vanishing eigenvalue, i.e., 

A B ~j(v,) = 0 (5.12) 

where j =  1, 2, or 3. As a consequence of this and Eqs. (1.11)-(1.13), the 
vectors (1, 0, 0,...), (0, 1, 0,...), and (0, 0, 1, 0,...), which correspond to 
O~(vl), ~2(vl), and ~3(vl), respectively, are eigenvectors of the matrix ~ ( 0 )  
with eigenvalue d(0). Since d(0) is finite for any M~>3 [cf. Eq. (1.11) and 
ref. 23], the matrix W(0) has (at least) three eigenvectors with non- 
vanishing eigenvalue. 

(b) The M x M matrix ~4(k, z) is also a quantity of order k ~ For, it 
follows from the Eqs. (3.2)-(3.4) that 

e + o ( k  3) (5.13) 

where the matrix elements Vjz of "U and Eit of g are given by 

Vjl= ((J~rl,/l(C) C2 ~r2,12(C ) ) (5.14) 

Eft= ((J~rl,ll(C) C~ ~r2,12(C ) ~ (5.15) 

respectively. Here we have used that the variable ~ in Eqs. (3.2)-(3.4) is 
large and of order 1/k [-since d(0) is finite], so that 1/( is of order k and 
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small. Thus, ~r l(k, z) is a quantity of order k ~ and given by [cf. 
Eq. (5.13)], 

~r [ z - d ( k ) ]  ~ --~ 

where the leading term - d ( k ) ~  is 
Eq. (1.12)]. 

~//" q-~ ("//'2- ~ ) +  O(k3)] (5.16) 

the same as that in ~-(k) [cf. 

Then, by subtracting the expressions (5.16) for d l(k, z) and (1.12) 
for if(k), one obtains 

[ 1 1 ( 5 . 1 7  ) Gjt(k, z) = z -  5re(k) + 2kB rk2(~/'2 - g)/[md(O)] + O(kSi ;, 

Here ~E(k) is the M x M matrix with elements Lf(k),  

L~(k) = (qs,,,h(e) LE(k) qs,2d2(e) ) (5.18) 

so that [cf. Eq. (1.4), (1.13), and (5.16)] 

(~__._T) 1/2 
L~(k ) = - i k  Vil+ n)~Ojt(k ) 

+ik 1 x/-~(k) (6j,13~,2+6j,26~,l) (5.19) 

where the three terms on the right-hand side are due to the free streaming 
( - i k ' v l ) ,  the collision (n)~Ak), and the mean field (n-dO terms in 
Eq. (1.14) for LE(k), respectively. 

We discuss the approach to hydrodynamic behavior of the Gjt(k, z) 
through the spectral decomposition of 5~E(k), 

M 
L~(k) = • z,(k) (J}O(k) (J$1)(k) (5.20) 

i= l  

where the zi(k ) are the M eigenvalues of ~qE(k) and the ~b}O(k) are the 
components of the corresponding M eigenvectors ~b(~ 

Using Eqs. (5.17) and (5.20), one finds that the Gjt(k , z) are, for k ~ 0, 
given by 

M 1 
GjI(A, z )  = E q~)i)(k) 05 i ) (k)  - -  (5.21) 

i= 1 Z - -  z i ( k  ) 

i.e., by a sum of M Lorentzians in z. 
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We remark that the term 2kB Tk2(f  2 -  g)/md(O) in Eq. (5.17) can be 
neglected for M ~ o o ,  since l i m M ~ ( ~ 2 - g ) - - 0  [of. Eqs.(5.14) and 
(5.15)]. We find in practice that the contributions of this term to the 
Gjt(k, z) are negligible when M >  10. Therefore, the Gjr z) are given by 
the M discrete eigenmodes [-i.e., eigenvalues z~(k) and eigenfunctions 
~bIi)(k)] of the M x  M matrix LeE(k) up to order k 2. 

For any M~> 3, LeE(k) has eigenmodes that can be called extended 
hydrodynamic modes, ~9-12) since for k ~ 0  they tend to the three 
hydrodynamic modes. For these modes, the eigenvalues zi(k) ( i= 1, 2, 3) 
tend to zero for k ~ 0 and the corresponding eigenvectors ~b(~ are linear 
combinations of the three vectors that correspond to the ~Pj(vl) with 
j =  1, 2, or 3 [-cf. Eqs. (5.12), (5.14), (5.19), and (1.13)]. They are the heat 
mode (i=h),  for which zh(k ) is real, and the two sound modes (i= _+), for 
which z+ (k) and z_ (k) are each other's complex conjugates. (9'32) The other 
M -  3 eigenvalues zi(k ) of LeE(k) (i = 4,..., M) are kinetic modes, since they 
approach finite negative values for k = 0, with corresponding eigenfunctions 
~(~ that have vanishing components ~by)(k) for j = 1, 2, and 3 and k = 0. 

Thus, in the BGK approximation of order M~> 3, the nine Gjt(k, z) 
with j or l = 1, 2, or 3 are described for k ~ 0 by the three hydrodynamic 
modes of LeE(k) only, i.e., by 

1 
Gj,(k, z) = Z r176 (~~ z - z~(k------~ (5.22) 

i = h , -  

The hydrodynamic description given by Eq. (5.22) for all nine Gjt(k, z) 
includes in particular the Landau Placzek triplet of Lorentzians for 
Gl~(k, z), or equivalently for SH(k, co) [cf. Eq. (5.3)]. (9'32) 

5.4. E igenmodes  

In the BGK approximation of order M for LE(k ) [cf. 
Eqs. (1.8)-(1.10)] the nine Fit(k, t) of Eq. (1.1) withL l=  1, 2, 3 are for any 
finite value of k given by a sum of M discrete eigenmodes and, in addition, 
an essential singularity contribution. Here we discuss the relative impor- 
tance of these two contributions to Fjl(k, t) and Sj~(k, o~) as functions of k 
and M. 

The Fjt(k , t) are the inverse Laplace transforms of the Gjt(k, z), i.e. [cf. 
Eq. (1.15)], 

1 f+ioo gj,(k, t) = ~ dz e~'Gj,(k, z) (5.23) 
ioo 

where, in the BGK approximation of order M, the Gjt(k, z) are given by 
Eq. (1.16). The Gjt(k, z) have M discrete singularities (i.e., poles) in the 
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complex z plane at finite, k-dependent, values z = zi(k), have one essential 
singularity at Re z-- -oo ,  and are analytic anywhere else. Therefore 

M 

Fjl(k, t) = ~ M~)(k) e zak~t + F~Ts)(k, t) (5.24) 
i - - 1  

Here the discrete eigenvalues zi(k) are associated with those M values of z 
for which the determinant of the M x M matrix 1 - d ( k ,  z) ~ ( k )  vanishes, 
i.e., 

D(k, z) = Det [ l  - d ( k ,  z) Y(k) ]  = 0 (5.25) 

and where the corresponding amplitudes M}~)(k) are given by 

1 
M(i)ik ~ = - -  [J-(k, zi) d ( k ,  zi)]j l (5.26) 

jt ~ J O'(k, zi) 

.Y- is the transpose of the M x M matrix of cofactors of 1 -  a g ~  and 
O'(k, z) = aD(k, z)/az. 

The (M-dependent) second term on the right-hand side of Eq. (5.24) is 
given by 

- dz e~'Gjt(k, z) (5.27) 
* j l  ~,v~ - -  ~ - -  ioo 

where 7 is real and negative and smaller than all real parts of the eigen- 
values zi(k) for all k. Thus, the F)~)(k, t) decay to zero for t - ,  +0% faster 
than exp(Tt) for any negative real 7. In fact, the ~s)(k ,  t) decay in a 
Gaussian-like manner, i.e., for large t they are proportional to exp(-at2) ,  
where a is a k-dependent parameter. 

We remark that for k--+ 0 the essential singularity contribution in 
Eq. (5.24) vanishes and that the M~)(k) and z,(k) tend to the ~a(.o~b~o and 
z~(k) of Eq. (5.21), respectively. Thus, while for k--+0, the Fi~(k, t) are 
described by M discrete eigenmodes alone, one needs for finite k in 
addition the contribution of an essential singularity [cf. Eq. (5.24)]. To 
study the importance of the essential singularity we consider the Fourier 
transforms of the three Fit(k, t) with j, l =  (1, 1), (1, 3), and (3, 3) given by 
[cf. Eq. (5.24)] 

1 M} ~)(k) ' v(~)/~- co) (5.28) Sy,(k, 09)=-  Re i~--zi(k)-t- oil ,,~, 
7'~ i = l  

where 

f + o o  P ( e s ) r  t )  ~(e*)i/~ CO)=(2~Z) -~ dtexp(-- icot) . j~ , , .  
~ j l  ~ '~ '  --  o~ 
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is the Fourier transform of the essential singularity contribution F)Ts)(k, t) 
in Fit(k, t). For  all densities and fixed M~> 10 we find that the S~Ts)(k, co) 
increase with increasing k to at most 5% of Sjz(k, co) when k l E =  20. 

To show this, we have determined all ten discrete eigenmodes of LE(k) 
in the B G K  method with M =  10 for all densities and k values [cf. 
Eqs. (5.25) and (5.26)], using the A-ordering. Thus, we obtained the 
complete first term on the right-hand side of Eq. (5.28) for M =  10. We also 
calculated the Sit(k, co) [i.e., the left-hand side of eq. (5.28)] in the B G K  
method with M = 1 0 ,  using 1 0 x l 0  matrix inversion [cf. Eqs. (5.3) and 
(1.16)]. The difference between these two terms determines the second 
term on the right-hand side of Eq. (5.28), i.e., the essential singularity 
contribution S~Ts)(k, co) for M =  10. 

For  all densities we find that S)7S)(k, co) increases from zero at k = 0 to 
values of the order of 1 and 5% of Sit(k, co) when klE ~ 6 and 20, respec- 
tively. We show this in Fig. 6 for the low-density (Boltzmann) limit of 
S11(k, co) = S(k ,  co).(36) In Figs. 6a and 6b we plot for M =  10 the full B G K  
values of S l , ( k ,  co) and the contributions to Sl l (k ,  co) of all ten discrete 
eigenmodes when (a) kI E = 6 and (b) klE = 20. We conclude from this and 

0.08 

T 0.04 
._o 

5 o 

v 0.03 
CO 

0.0 2 

0.01 

I i I 1 I I I 

I [ [ [ i i I I 

0 
0 I 2 

Fig. 6. (--) The reduced S(k, o9)/to in the low-density (Boltzmann) limit as a function of the 
reduced frequency COto/kl o for (a) kl o = 6 and (b) kl o = 20 in the BGK approximation of order 
M= 10, using the Alterman ordering. (--)  The contribution of all ten discrete BGK eigen- 
modes to S(k, ~o)/t o. The difference is the contribution of the essential singularity. 
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the foregoing that for klE < 20 the Sit(k, co) can be described by considering 
the discrete eigenmodes of LE(k) alone and that, when M = 10, the essen- 
tial singularity at Re z = - o o  is relevant only for kl E >> 20. 

For fixed values of kIE up to kIE = 20 we verified numerically up to 
M =  55 that, for all densities, the contributions S}TS)(k, ~o) to the Sjz(k, co) 
decrease with increasing M, implying that the Sit(k, co) are increasingly 
better described by the discrete modes of LE(k) alone. However, the con- 
vergence in M is too slow to conjecture that for fixed kIE and M--+ oo the 
Sjz(k, co) can be represented by an infinite sum of discrete eigenmodes only. 

A P P E N D I X  

We consider the integral [cf. Eq. (4.26)] 

I(B;A)= dSexp[-(B'8) 2] ~F1 1,~; (A.1) 

for any two (complex) vectors A and B. Expanding the exponential and the 
confluent hypergeometric function yields 

, ( B ; A ) =  ~ ~, ~ (-)q+t(1/2)q+'(1)P+t 
t=o p=O q=O ' i~ ' lq (~ l / -~ t  {-f]2)7+S;t 

• (A2) p (B2) q (A. B) 2t (A.2) 

where we have used that 

1 f d8 (A. ~)2, (B. ~)2m 
4~ 

= (A2) , (B2) m l! m! (1/2), (1/2)m 

(3/2),+m 

Min(l,m) 1 (A "B2~ / 

x ~ J[ ( l - j ) !  (m--j)! (1/2)j\A2B2J (A.3) 
j = 0  

In Eq. (A.2) we use that the sum over p is a confluent hypergeometric 
series, i.e., 

q + t  1 
( - )  ( /2)q+, (B2) q (A-B)  2t I(B; A)= ~ ~, q! (1/2), (3/2)q+2, 

t = 0  q = 0  

x iF1 (1 +t,-~+q3 + 2t; A2 ) (A.4) 
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Then, applying Kummer's transformation 

1F1 l+t , -~+q+2t ,  A z =exp(A2) iF~ - ~ + q + t , ~ + q + 2 t ; - A  2 

one finds 

( - ) ~ + q + '  (1/2)q+ t (1/2 + q + t)~ 
/(B;A)=eA2 ~ ~ ~ p!q!(1/2)t(3/2)o+2,(3/2+q+Zt)p 

t ~ O  q ~ O  p ~ O  

x (A2) p (B2) q (A" B) 2t (A.5) 

The sum over q, again, is a confluent hypergeometric series, i.e., 

i(B;A)=ea2 ~ ~ ( -  )P+' (1/Z)p+, 

• (A2)P (A" B)2' ~ F ~ - ~ + p + t ; ~ + p + 2 t ; - B  2 (A.6) 

for which we use Kummer's transformation, so that 

( -  )~+' (1/2)~+t (1 + t)q 

t ~ O  p ~ 0  q ~ O  

x (A2) p (B2) e (A- B) 2t (A.7) 

Equivalently, 

x (A2) p (B2) q (A" B) 2' (A.8) 

Then, when in these summations the variables p and q are interchanged, 
one obtains the summations on the right-hand side of Eq. (A.2) with A and 
B interchanged. Hence, 

I(B; A) = e A2- a~/(A; B) (a.9) 

which directly leads to the equality given by Eq. (4.26). 
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